
18 The Delphi Magazine Issue 64

The Holly And The Ivy
A stocking full of algorithms

by Julian Bucknall

A
lg

or
it

h
m

s

A
lfresco

I’d dropped my wife Donna off at
the north entrance of the Air

Force Academy at the trailhead for
the Santa Fe Trail and had driven
down south to the Woodmen
trailhead to pick her up. We have
this scheme for her marathon
training: she runs down the trail
from north to south (about 12
miles), and I drive to the next
trailhead, get on my mountain bike,
and cycle to meet her. That way
she gets to run something continu-
ously without having to stop and
double back, and I get to really ride
at speed up the trail until we meet.
After that, I coast beside her back
to the car [So, Julian, when you
complained in those emails about
how Donna always beat you back to
the car you were just kidding? Ed].

And riding at speed in the brisk
air on that trail was glorious. The
leaves were turning, the aspens
were now their world-famous
golden color, and I was filled with a
sense of being alive. The trail
winds its way through some won-
derful unspoilt countryside on the
Academy land and the hustle and
bustle of Colorado Springs seemed
miles away.

That late afternoon there were
practically no people on the trail
and I’d picked up a nice rhythm,
speeding down hills, switching
gears on the upslope to get the
power to reach the next summit. I
rounded a bend, leaning into it at
just the right angle, and had to
slide suddenly to a halt: a rather
corpulent man in red stood with
his back to me blocking the path.
He turned at the noise.

“How are you, dear chap?”
Father Christmas asked.

I watched some pebbles dis-
lodged by my sudden stop fall over
the edge of the path and tumble
thirty feet down into Monument
Creek.

“Oh, fine. A little breathless, per-
haps. It’s not often I go round that
corner to find someone blocking
the way.” I got up and dusted

myself off. The bike was fine; I
propped it up against a spruce and
sat down on the grass. With a
wheeze, Father Christmas sat next
to me.

“I don’t know how you can ride
that thing,” he said. “Much more
comfortable in a sleigh.” He
nodded over to where a sleigh was
parked incongruously in the trees,
with the reindeer introducing
themselves to some local deer. We
exchanged a few pleasantries,
catching up after another year of
not seeing one another.

“I dare say since it is autumn,
you’re here to collect some small
algorithms for Christmas again?” I
asked, having regained my breath
and enjoying the sit-down.

I should explain to my new read-
ers. A while back, the original
Father Christmas decided there
was too much work for one giver to
do, so he cloned himself and set up
a variety of donor markets with a
different Father Christmas looking
after each. The Father Christmas
I’d nearly crashed into was the
Father Christmas of Programmers.
He’s more interested in developing
software for the new e-Christmas
venture than in wandering around
leaving festive algorithms on pro-
grammers’ hard drives as pres-
ents, and so he comes to me. I write
a few algorithms up in an article for
the December issue and he gets to
stay in on Christmas Eve and
puzzle over some JavaScript.

I kept the thought to myself that
maybe he should get out and do
more and have some exercise
instead of programming in
JavaScript (after all, I like presents
at Christmas too) and asked him
whether he’d got any ideas to start
us off.

“Actually, there was something I
wanted to discuss that stemmed
from one of your articles,” he
started off. “Not really an algo-
rithm, but I think your readers
would be interested.” It turned out
that he was talking about the

article I’d written on heap debug-
ging (this appeared in Issue 62).
“I found the information interest-
ing and I was able to clean up some
memory problems in an old Delphi
app, but there was something else
happening in this code that
required me to find out the
creation order of various objects.”

“So, put some debugging code in
the object’s constructor to write to
a log file,” I said.

“But the problem was that I
didn’t have the source code to
some of the classes.”

I pondered. It was a tricky prob-
lem indeed. Suppose you have a
black box library that uses objects
all over the place that were inter-
acting with your objects: how can
you work out what was getting
created and when? You can’t
access the constructor to every
class whose creation you want to
track: it’s too unwieldy, especially
when you don’t have the code.

“It seems like an ideal applica-
tion of the replacement heap man-
ager stuff you were talking about in
the article,” he added, “but I
cannot for the life of me work out
from where the GetMem routine is
being called.”

I agreed with him. It seemed like
an ideal use of a heap manager
replacement, but all GetMem gets
called with is a size parameter. We
don’t get a flag parameter to say,
“this is for an object,” or “this is for
a long string.” I needed to experi-
ment so I asked for his notebook.
He fiddled in his computer bag and
brought out this curvy, ice blue,
pop art notebook like nothing I’d
seen before except in Apple
designers’ dreams. It was an

December 2000 The Delphi Magazine 19

instant-on machine as well and
without waiting I had Delphi 5
ready to rock.

Some time later, after some
poking around with the CPU view,
I had my answer. In the initializa-
tion section of my heap manager
unit, I stored the addresses of
TObject.NewInstance, TObject.Fr-
eeInstance and TObject.Create.
Since these are written in that
order in the System unit, with no
routines in between them, if I have
a return address between TObject.
NewInstance and TObject.Free-
Instance then it must be within the
code for NewInstance. Similarly,
I can detect a return address within
TObject.FreeInstance. (Luckily,
Father Christmas had a complete
collection of Delphi versions and
I can confirm that this is true for
Delphi 3, 4, and 5.)

Now the clever stuff. My heap
manager’s GetMem gets called, and
the first thing I do is to capture the
base pointer value (EBP). Using the

CPU view of the debugger I made a
note of the values on the stack
when a constructor called my
routine. There were four 4-byte
values of interest pointed to by
EBP. The first was a longint: the
value of the caller’s EBP. The
second was a pointer: the return
address of the System unit’s _GetMem
routine. The third was another
pointer: the return address within
the InitInstance routine. The
fourth and last value was another
pointer: the class’s VMT.

Of course, if GetMem were called
by some other code, there would
still be at least four 4-byte values
there on the stack. What I needed
to do was to work out whether the
third 4-byte value was within
TObject.NewInstance. If so, then it
was an object constructor doing
the memory allocation. At that
point I could take the class pointer,
typecast it to a TObject and call the
ClassName method to get the class
name and write it to a log. This
would obviously not work for
those classes that override their
NewInstance method, but those

tend to be few and far between. (In
Delphi 5, there is only one class
that overrides NewInstance and
that’s TInterfacedObject. Luckily,
this overridden method calls the
inherited NewInstance, the one
we’re looking for, and so this trick
will still work since the stack looks
the same.)

I also worked out the same kind
of trick for an object’s destructor.
Here EBP points to three 4-byte
values: the caller’s EBP, the return
address of System’s _FreeMem rou-
tine, and the return address of the
FreeInstance method. I could
easily check to see whether the
FreeInstance return address was
valid, in which case I could type-
cast the pointer I was freeing as a
TObject and call its ClassName
method again.

I typed away for a while, crashed
my test app a few times until I got
the interface to the call stack right,
and produced Listing 1. Father
Christmas nodded happily. “Bril-
liant, dear chap. It’s amazing how
you can work your way around the
CPU view; it scares the living

var
Log : System.Text;
OrigHeap : TMemoryManager;
OurHeap : TMemoryManager;
NewInstAddr : longint;
FreeInstAddr : longint;
CreateAddr : longint;

type
PNewInstCallStack = ^TNewInstCallStack;
TNewInstCallStack = record
csOldEBP : longint;
csGetMemRetAddr : longint; // actually a pointer
csNewInstRetAddr: longint; // actually a pointer
csClassInstance : TClass;

end;
PFreeInstCallStack = ^TFreeInstCallStack;
TFreeInstCallStack = record
csOldEBP : longint;
csFreeMemRetAddr : longint; //pointer;
csFreeInstRetAddr: longint; //pointer;

end;
function OurGetMem(Size: Integer): Pointer;
var
CallStack : PNewInstCallStack;
PtrString : array [0..8] of char;

begin
{get the call stack}
asm
mov CallStack, ebp

end;
{allocate the memory}
Result := OrigHeap.GetMem(Size);
{if this was called from TObject.NewInstance, output a
line to the log showing the object details}

if (NewInstAddr <= CallStack^.csNewInstRetAddr) and
(CallStack^.csNewInstRetAddr < FreeInstAddr) then begin
PointerAsHex(PtrString, Result);
writeln(Log, 'New: ', PtrString, ' ', Size:10, ' ',
CallStack^.csClassInstance.ClassName);

end;
end;
function OurFreeMem(P : Pointer) : integer;
type
PClass = ^TClass;

var
CallStack : PFreeInstCallStack;
ClassPtr : PClass;
PtrString : array [0..8] of char;

begin

{get the call stack}
asm
mov CallStack, ebp

end;
{if this was called from TObject.FreeInstance, output a
line to the log showing the object details. Note this
only works because the first field of the object being
freed is the class pointer}

if (FreeInstAddr <= CallStack^.csFreeInstRetAddr) and
(CallStack^.csFreeInstRetAddr < CreateAddr) then begin
PointerAsHex(PtrString, P);
ClassPtr := P;
writeln(Log, 'Free: ', PtrString, ' ', ' ':10, ' ',
ClassPtr^.ClassName);

end;
{free the memory}
Result := OrigHeap.FreeMem(P);

end;
procedure InitializeUnit;
begin
{get the addresses of NewInstance,
FreeInstance and Create as integers}
NewInstAddr := longint(@TObject.NewInstance);
FreeInstAddr := longint(@TObject.FreeInstance);
CreateAddr := longint(@TObject.Create);
{open up the log file}
System.Assign(Log, 'C:\AAClass.LOG');
System.Rewrite(Log);
writeln(Log,
'Algorithms Alfresco Object Creation/Destruction Log');

writeln(Log);
writeln(Log, 'Type Address Size Class');
{get the original manager}
GetMemoryManager(OrigHeap);
{set up our heap manager}
OurHeap.GetMem := OurGetMem;
OurHeap.FreeMem := OurFreeMem;
OurHeap.ReallocMem := OrigHeap.ReallocMem;
{replace heap manager with ours}
SetMemoryManager(OurHeap);

end;
procedure FinalizeUnit;
begin
{restore the original manager}
SetMemoryManager(OrigHeap);
{close the log}
writeln(Log, '..finished..');
System.Close(Log);

end;

➤ Listing 1: Logging object
creation and destruction.

20 The Delphi Magazine Issue 64

daylights out of me.” I responded
that sometimes the CPU view was
the only thing that would save your
bacon and it was worth getting to
know.

“Whilst playing around with this
code, I remembered an email I’d
received about the heap article.

“Someone who’d read the piece
had a problem with memory frag-
mentation and he wanted to know
whether I had any ideas about solv-
ing it. I thought about it for a while,
and suggested a couple of avenues
to explore.

“The first idea was to look at
the heap manager that calculated

distributions that I provided as
part of the heap manager article.
This would give you an idea of what
size of allocations you were making
and how many of them. For a typi-
cal application, the number of
small allocations far exceeds that
for the larger allocations. All those
form objects, button objects, edit
control objects and so on are typi-
cally held in fairly small memory
blocks. Borland have obviously
done their homework with the
standard memory manager: it’s
biased towards small allocations.
However, the standard manager
does try and coalesce freed blocks
together.

“So, the first plan would be to
create free lists for small

allocations. How many? Well, I
don’t see why we should ignore
Borland’s research: let’s use a free
list for each allocation up to 4Kb;
that’s what they do in theirs. The
difference is that we won’t be
coalescing freed blocks.

“Now that, in its turn, will pro-
duce problems. We may (for
example) allocate 1,000 blocks of
122 bytes, free them all and never
allocate another: we’re left with
this long free list of unusable
memory. So, ideally, we should
look at the granularity of our allo-
cations so that we have less free
lists. Delphi’s heap uses granular-
ity of 4 bytes. Let’s change that to a
granularity of 32 bytes. Before you
roll your eyes at me, consider

type
PFreeNode = ^TFreeNode;
TFreeNode = packed record
fnNext : PFreeNode;

end;
const
MinFreeInx = 0;
MaxFreeInx = (4096 div 32) - 1;

var
OrigHeap : TMemoryManager;
OurHeap : TMemoryManager;
{the free lists for blocks of size 32 to 4096}
FreeList : array [MinFreeInx..MaxFreeInx] of pointer;

function OurGetMem(Size : integer) : pointer;
var
Inx : integer;

begin
{make a decision based on the size: if it's less than

or
equal to 4096 we can get the allocation from our free
lists...}

if (Size <= 4096) then begin
{round up to the nearest 32 bytes}
Size := (Size + 31) and not integer(31);
{if there is a node free on the relevant free list,
use it}
Inx := pred(Size div 32);
if (FreeList[Inx] <> nil) then begin
Result := FreeList[Inx];
FreeList[Inx] := PFreeNode(Result)^.fnNext;

end
{otherwise allocate from Delphi's heap manager}
else
Result := OrigHeap.GetMem(Size);

end
{otherwise the size is too great for our linked lists,
round up to nearest 1KB and then allocate it from
Delphi's heap manager}

else begin
Size := (Size + 1023) and not integer(1023);
Result := OrigHeap.GetMem(Size);

end;
end;
function OurFreeMem(P : pointer) : integer;
type
PInteger = ^integer;

var
Size : integer;
Inx : integer;

begin
{make a decision based on the block's size: if it's

less
than or equal to 4096 we can store it on our free
lists...}

Size :=
PInteger(PChar(P) - sizeof(integer))^ -

sizeof(integer);
if (Size <= 4096) then begin
Inx := pred(Size div 32);
PFreeNode(P)^.fnNext := FreeList[Inx];
FreeList[Inx] := PFreeNode(P);
Result := 0; {no error}

end
{otherwise just free it with the original heap manager}
else
Result := OrigHeap.FreeMem(P);

end;
function OurReallocMem(P : pointer; Size : integer) :
pointer;

var
OldSize : integer;

begin
{Realloc is complicated: we need to trap reallocations
using our free lists. Realloc can be called with 4
possibilities:
P = nil, Size = 0: return nil
P = nil, Size > 0: equivalent to GetMem(Size),
return new block

P <> nil, Size = 0: equivalent to FreeMem(Size),
return nil

P <> nil, Size > 0: equivalent to GetMem(Size),
copy old data to new block, FreeMem(P), return new
block }

if (P = nil) then begin
if (Size <> 0) then
Result := OurGetMem(Size)

else
Result := nil;

end else begin
if (Size = 0) then begin
OurFreeMem(P);
Result := nil;

end else begin
Result := OurGetMem(Size);
OldSize := PInteger(PChar(P) - sizeof(integer))^ -
sizeof(integer);

if (OldSize <= Size) then
Move(P^, Result^, OldSize)

else
Move(P^, Result^, Size);

OurFreeMem(P);
end;

end;
end;
procedure InitializeUnit;
begin
{initialize the freelists}
FillChar(FreeList, sizeof(FreeList), 0);
{get the original manager}
GetMemoryManager(OrigHeap);
{set up our heap manager}
OurHeap.GetMem := OurGetMem;
OurHeap.FreeMem := OurFreeMem;
OurHeap.ReallocMem := OurReallocMem;
{replace heap manager with ours}
SetMemoryManager(OurHeap);

end;
procedure FinalizeUnit;
var
i : integer;
P : PFreeNode;
Temp : PFreeNode;

begin
{free all blocks on the free lists}
for i := MinFreeInx to MaxFreeInx do begin
P := FreeList[i];
while (P <> nil) do begin
Temp := P;
P := P^.fnNext;
OrigHeap.FreeMem(Temp);

end;
end;

➤ Listing 2: Trying to alleviate
heap fragmentation.

22 The Delphi Magazine Issue 64

string manipulations. With strings,
we may have lots of reallocations
going on as we build up string text.
Having a larger granularity will
help in this and make that type of
code much faster.

“So now we have 32-byte granu-
larity and we have 128 free lists for
the freed blocks of size 32, 64, 96
and so on bytes. For the allocations
that are greater than 4Kb we still
have a problem. The answer is to
make the granularity much larger
for those big blocks. We’ll be brave
here and allocate memory with a
1Kb granularity.” He raised his
eyebrows at this.

“Think of it like this. For those
large allocations, typically, we’re
reading bitmaps into memory and
then freeing them. Or we are
allocating a big buffer to help read
a file in big chunks. We could call
these one-shot allocations, if you
like. Having certain specific
memory block sizes would result in
more memory reuse than when we
had a 4-byte granularity: it’s more
likely we could reuse a memory
block.

“Another use of big allocations
is to create a big TList or some
other expandable monolithic data
structure. We could call these
machine-gun allocations: bang it’s
this size, bang it’s another, bang a
third, rat-tat-a-tat. Having this
kind of large granularity will help
reduce fragmentation due to

continually growing TLists. It
won’t remove it completely, but
it’ll do for a first stab. Now, with
this scheme we would then use up
more memory more quickly, but to
quantify the effect would need
some experimentation. Maybe a
smaller granularity would be
better for certain applications.”

I was coding as I spoke. The 128
free lists would be simple stacks
using a linked list of freed blocks.
If a particular free list was empty,
I coded it such that the original
memory manager was called. The
memory blocks over 4Kb were
even easier to code: all allocations
went through the original memory
manager and hence I used the origi-
nal free list code in that. My first
attempt leaked memory like crazy,
but between us we nailed that one
down and TurboPower’s Sleuth
Codewatch gave us a clean bill of
health. Listing 2 was the result.

We looked out over the Front
Range mountains for a while and
thought of other algorithms. I came
up with one first.

“I was writing a test program the
other day for which I had to pro-
duce a series of random numbers.
These numbers weren’t in a uni-
form distribution; instead it was as
if I was trying to simulate a loaded
die. For an example, suppose that I
had to produce a 1 with probability
0.1, a 2 with probability 0.2, a 3 with
probability 0.3 and a 4 with proba-
bility 0.2, and a 5 or a 6 with proba-
bility 0.1. If you add all those
probabilities up you’ll get a total of
1.0, indicating that there are no

other possibilities. The virtual die
I’m then simulating is weighted
towards 2s, 3s, or 4s and in fact,
funnily enough, the probabilities
are known as weights. How do I go
about generating a stream of
numbers that satisfy this
distribution?”

Father Christmas thought about
it for a long moment. “OK, how
about this? Generate a number
from 1 to 10. If the number is 1, we
output a 1. If the number is 2 or 3,
we output a 2. If the number is 4, 5
or 6, we output a 3; for a 7 or 8, a 4
for a 9 a 5; for a 10 a 6. That gives
the right probabilities.” I nodded:
it was a good answer and writing
the code to implement it would be
trivial.

“All right,” I said. “Now suppose
you want to write a random
number generator that generates
numbers from 1 to n according to
an array of n weights that you
supply to the generator? How
would you do that?”

This time he took the notebook
from me and started typing. After a
couple of false starts, he suddenly
smacked his head and said “Doh,
it’s easy!” He explained what to do.
“We need to take the weights array
and calculate a cumulative
distribution for them in another
array. The first data point is the
probability for 1. The second data
point is the sum of the
probabilities for 1 and 2, the third
the sum for 1, 2, and 3, and so on.
The last data point, although it
may not calculate to that exactly,
should be 1.0. These cumulative

type
TaaRandomWeightedGenerator = class
private
FCount : integer;
FWeights : array of double;

protected
public
constructor Create(const aWeights : array of double);
destructor Destroy; override;
function Get : integer;

end;
constructor TaaRandomWeightedGenerator.Create(
const aWeights : array of double);

var
i : integer;
TotalWeight : double;

begin
inherited Create;
Assert(length(aWeights) <> 0,
'An array of weights must be provided');

SetLength(FWeights, length(aWeights));
TotalWeight := 0.0;
FCount := succ(High(aWeights));
for i := 0 to pred(FCount) do begin
TotalWeight := TotalWeight + aWeights[i];
FWeights[i] := TotalWeight;

end;

if (abs(TotalWeight - 1.0) > Epsilon) then
raise Exception.Create('The weights to not total 1.0');

FWeights[pred(FCount)] := 1.0;
end;
destructor TaaRandomWeightedGenerator.Destroy;
begin
SetLength(FWeights, 0);
inherited Destroy;

end;
function TaaRandomWeightedGenerator.Get : integer;
var
Value : double;
i : integer;

begin
Value := Random;
for i := 0 to pred(FCount) do begin
if (Value < FWeights[i]) then begin
Result := succ(i);
Exit;

end;
end;
{we shouldn't ever get here: this staement is merely to
fool the compiler into not giving us a warning about the
result value}

Result := FCount;
end;

➤ Listing 3: Generating random
numbers according to their
weights.

December 2000 The Delphi Magazine 23

data points, obviously, are in
increasing order.

“Generate a floating point
random number between 0.0 and
1.0. This random number will fall
somewhere within our array, gen-
erally in between two of the data
points. We can do a normal search
within the array to find out where
this is. The place where the
random number falls indicates the
number we are supposed to
output. For example, if it fell
between the first and second data
points, the number we output is 2.

“It’s as if we are throwing darts at
a long strip of paper, divided into
sections according to the original
weights.” He grinned, typed away
and produced Listing 3. He’d
decided to make it a class since the
calculation of the cumulative
weights for every random number
generated was too inefficient.

“Now here’s one for you,” he
said. “I’ve been taking a course in
statistics for this e-Christmas
venture. My fellow Fathers want a
bunch of trend data, correlations
and that kind of thing to see how

they’re doing and to spot
opportunities in their various mar-
kets. In general, calculating the
statistical values is all fairly easy:
you just follow the formulae in the
course book and convert to code.
One set of measures has me
stumped though: the median and
the various required percentiles.
As far as I can see, the only way to
calculate these values is to sort the
data and then choose the middle
one for the median, the one 1/20th

along for the 5th percentile, the one
19/20th along for the 95th percentile
and so on. Is there a better way?”

I stared at him. “You expect me
to remember this stuff off the top of
my head? We’re out here in the
middle of nowhere and you want
me to just explain it?” He looked
abashed. “Sorry, old chap, I
forgot.” He rummaged around
again and produced a DVD. “It’s got
all the important algorithm books
on it,” he explained. “I got one of
the elves to scan ‘em all in.”

I browsed a bit. “Ah ha, I remem-
ber now, there is a faster method
using something similar to

quicksort. However we don’t go all
the way and actually sort the data,
all we do is just organize the data
enough that the median falls in the
right place.

“Let’s go back and review
quicksort for an array. The way
quicksort works is that we partition
the array into two parts about a
pivot element. All elements that
are less than the pivot are placed
to the left of the pivot value, and all
those greater than the pivot value
to the right. The two parts are not
sorted, by any means, but at least
we can say that the pivot element
is in the correct place in the array if
the array was really sorted.

“We now perform the quicksort
algorithm on the left hand side and
then on the right hand side, that is
quicksort can be written as, parti-
tion, quicksort the left, quicksort
the right. This is of course a recur-
sive algorithm. Eventually, we
recurse to a point where we can no
longer partition (there’s only one
element in the part we’re looking
at) and of course this means the
sub-sub-sub array we have is

24 The Delphi Magazine Issue 64

sorted and we start completing all
the recursive calls we made to get
to where we were.

“Well, with percentile calcula-
tions, we don’t quite go all the way.
Suppose we perform the first
partition call. At this point we have
a single element in the correct
position, and furthermore to the
left all the elements are less than
this and to the right they’re all
greater. If the position of the ele-
ment we’ve just placed is exactly
halfway through the array then
we’ve found the median and can
stop. Generally, of course, we have-
n’t. However, we can easily work
out where the median element lies
(either to the left or to the right)
and so we can partition the rele-
vant part of the array. This puts
another element into its correct
place, and again we can either stop
because that was the median, or
select the correct part of the parti-
tion and do it again.

“This process is almost like
binary search, in a way. On aver-
age, we shall ignore roughly half of
the array every time we partition
the array, and we can zero in on the
median fairly quickly.

“The only thing left is to recall
the partition algorithm. Going back
to the Algorithms Alfresco article

for Issue 37, we can steal the
partition code from that.

“Percentile calculations work in
exactly the same way, except that
we’re no longer trying to find the
value of the element that’s in the
middle, we’re trying to find the
value of the element 5% or 10%
along (or whatever the percentile
value is we’re looking for). Listing 4
shows the completed code for cal-
culating a given percentile of a
given array. (It actually calculates
the value of a given element in an
array, if that array were sorted.
The median would be the value of
the element in the middle of the
array, that is at the position given
by the count divided by two.)

“Once we do that of course we
can do things like extract out all the
elements between the 5% and 95%
percentile, ignoring the ‘way out’
data out in the tails, and then calcu-
late the mean, standard deviation,
and so on of the best 90% of the
data.”

I leaned back against the trunk as
Father Christmas looked over the
code. “I don’t suppose you’d con-
vert it to Java,” he started to ask
and then fell quiet as he saw my
face. “No, I suppose not. I’ll get one
of the elves to do it.”

Father Christmas delved into his
bag again and pulled out two
ice-cold bottles of Evian and
offered one to me. “In last month’s
article on external mergesort you

were kind enough to show us how
to mergesort a file,” he said, after
drinking his fill. “But how can you
modify the algorithm to sort an
arbitrary set of data? Maybe the
data doesn’t come in a handy file.”

“Oh, that’s easy,” I said. “But we
do need to lay down some ground
rules. Suppose we want to write a
sorter object to do this. It has a
property defining the length of the
records we want to sort. We then
proceed to give it a set of records
through many calls to a method
(call this one Add). After we’ve
given it the whole set of records,
we get it to sort them, and then we
proceed to extract the records
from the object in sorted order
through many calls to another
method (call this one Get). What
we do with the records in sorted
order is entirely up to us: the
sorter object doesn’t need to
know.

“So we have three phases in our
hypothetical object: adding, sort-
ing and retrieving. Actually, as it
happens, we can get away with
only two: adding and retrieving,
because the very first call to the
Get method causes the records
we’ve added to be sorted.” Father
Christmas smiled at this and
nodded.

“What we need to do is really
simple. We allocate a big block of
memory as an array; sufficient to
hold many of the records we may

function CalcPercentile(var aItemArray : array of
TDataElement; aLeft, aRight : integer; aLessThan :
TLessFunction; aPosn : integer) : TDataElement;
function Partition(L, R : integer): integer;
var
i, j : integer;
Last : TDataElement;
Temp : TDataElement;

begin
{set up the indexes}
i := L;
j := pred(R);
{get the partition element}
Last := aItemArray[R];
{do forever (we'll break out of the loop when needed)}
while true do begin
{find the first element greater than or equal to the
partition element from the left; note that our
partition element will stop this loop}

while aLessThan(aItemArray[i], Last) do
inc(i);

{find the first element less than the partition
element from the right; check to break out of the
loop if we hit the left element - we have no
sentinel there}

while aLessThan(Last, aItemArray[j]) do begin
if (j = L) then
Break;

dec(j);
end;
{if we crossed get out of this infinite loop to swap
the partition element into place}

if (i >= j) then
Break;

{otherwise swap the two out-of-place elements}
Temp := aItemArray[i];
aItemArray[i] := aItemArray[j];
aItemArray[j] := Temp;
{and continue}
inc(i);
dec(j);

end;
{swap the partition element into place, return the
dividing index}

aItemArray[R] := aItemArray[i];
aItemArray[i] := Last;
Result := i;

end;
var
DividingItem : integer;

begin
while (aLeft < aRight) do begin
{partition about the final element in the set}
DividingItem := Partition(aLeft, aRight);
{select which part to further partition}
if (DividingItem = aPosn) then begin
Result := aItemArray[DividingItem];
Exit;

end;
if (DividingItem < aPosn) then
aLeft := succ(DividingItem)

else
aRight := pred(DividingItem);

end;
Result := aItemArray[aLeft];

end;

➤ Listing 4: Calculating the value
of an element in a sorted array
without sorting it.

December 2000 The Delphi Magazine 25

procedure TaaSorter.Add(var aRecord);
begin
{if we've no buffer, allocate one}
if (FBuffer = nil) then
srGetBuffer;

{check to see whether we've filled the buffer}
if (FRecCount = FMaxRecCount) then begin
{if this was the first time that we filled the buffer,
create the merge files}

if (FState = AddingState) then
srCreateMergeFiles;

{sort then copy this bufferful of records to the correct
Fx file}

srQuicksortBuffer;
TFileStream(FDestFile).WriteBuffer(FBuffer^, FRecLen *
FRecCount);

{change the destination file for the next one}
if (FDestFile = FF1) then
FDestFile := FF2

else
FDestFile := FF1;

{reset the buffer}
FRecCount := 0;
{make sure the state is correct}
FState := AddWithMergeState;

end;
{add this record to the buffer}
Move(aRecord, FBuffer[FRecLen * FRecCount], FRecLen);
inc(FRecCount);
{make sure the state is correct}
if ((FState=WaitingState) or (FState=FinishedState)) then
FState := AddingState;

end;
function TaaSorter.Get(var aRecord) : boolean;
var
BytesRead : integer;

begin
{get rid of the simple case}
if (FState = FinishedState) then begin
Result := false;
Exit;

end;
{if the state is "adding records" then we need to
quicksort the buffer and change the state to "getting
records"}

if (FState = AddingState) then begin
srQuicksortBuffer;
FCurRec := 0;
FState := GettingState;

end;
{if the state is "adding records using mergefile" then we

need to write out the final buffer to the correct
destination file, and merge the files. The state gets
changed to "getting records with merge"}

if (FState = AddWithMergeState) then begin
srQuicksortBuffer;
TFileStream(FDestFile).WriteBuffer(FBuffer^, FRecLen *
FRecCount);

srMergeFiles;
FCurRec := 0;
FRecCount := 0;
FState := GetWithMergeState;

end;
{if the state is "getting records" return the next one in
the buffer; if there is none, return false}

if (FState = GettingState) then begin
if (FCurRec = FRecCount) then begin
Result := false;
FState := FinishedState;

end else begin
Move(FBuffer[FCurRec * FRecLen], aRecord, FRecLen);
inc(FCurRec);
Result := true;

end;
end
{if the state is "getting records with merge" return the
next one in the buffer; if there is none, try and read
another buffer full from the final merge file; if
there's still none, we're finished}

else begin
if (FCurRec = FRecCount) then begin
BytesRead := TFileStream(FSrcFile).Read(FBuffer^,
FMaxRecCount * FRecLen);

{if there's nothing left in the final merge file,
we're done}

if (BytesRead = 0) then begin
Result := false;
FState := FinishedState;
Exit;

end;
{calculate the number of records in this final buffer}
FRecCount := BytesRead div FRecLen;
FCurRec := 0;

end;
{copy the current record over}
Move(FBuffer[FCurRec * FRecLen], aRecord, FRecLen);
inc(FCurRec);
Result := true;

end;
end;

➤ Listing 5: A sorter class using
mergesort: Add and Get.

receive. During calls to the Add
method we append the records
we’re given onto this array. Even-
tually, one of two things will
happen: either the user calls the
first Get, or we have no more room
to add a record. In the first case, we
quicksort the array of records
we’ve accumulated and then start
doling them out to the user. In the
second case, we write the records
to a merge file, called F1, to use the
language of last month’s article.”

Father Christmas suddenly took
over. “Ah, I see. What you are doing
is using the Add method to build up
blocks of records that you
subsequently write to files F1 and
F2. At the first call to Get, you then
proceed to merge F1 and F2 into
files G1 and G2, doubling the run
length, and then merge G1 and G2
into F1 and F2, until you are left
with a single file containing all the
records, in sorted order. In other
words, the Add method replaces

the SplitFile routine you pre-
sented last month.”

“Exactly,” I said. He took his
machine, made a copy of the
mergesort code, and of my
quicksort code from way back
when, and then started to cast the
whole lot into a class. “How much
memory do I use for the array of
records?” he asked half way
through. “Make it a property,” I
answered and watched the deer.
Finally he looked up triumphantly
and presented the code to me
(Listing 5 shows his Add and Get
methods for this class).

“What next?” he asked, rubbing
his hands. “A final algorithm,
something to set us on our way?”

“OK, how about this one? At
TurboPower, we have a weekly
task. We each write a tech tip on
one of our products in rotation.
The last one I wrote was on how to
read a file or a stream created with
zlib with our Abbrevia compres-
sion library. If you remember, zlib
is an open source compression
library and you get a unit for using

it with Delphi. It turns out that the
compression part isn’t a problem,
the difficulty is that zlib uses a dif-
ferent checksum to zip files. Zip
files use an ordinary 32-bit CRC
(see my article from August 1999
for details), but zlib uses a special
one called an Adler checksum,
named after one of the authors of
zlib.

“The algorithm itself is pretty
simple and can be explained in a
few sentences. Optimizing it is an
interesting exercise, though.

“We start off with a longwordvari-
able, the checksum, with the value
1. For each byte in the stream, we
do this: split the current checksum
into two 16-bit halves, the top and
the bottom. Add the byte to the
bottom half, mod 65521. Now add
the bottom half to the top half, also
mod 65521. Join the two halves
together again to form a 32-bit
checksum. Repeat this process
with every byte in the stream.” I
coded Listing 6 as I spoke: it calcu-
lates the Adler checksum for a
block of data. I made a couple of

26 The Delphi Magazine Issue 64

enhancements in that I only split
the checksum into two at the
beginning and rejoined them at the
end.

“The problem with this algor-
ithm is not in the checksum it pro-
duces (in fact it can be shown that
the properties of an Adler check-
sum are commensurate with those
of the ordinary CRC) but in the
nasty calculation requirements. If
you recall CRCs are calculated with
a big table and lots of bit opera-
tions like XORs and shifts. The
Adler checksum needs two addi-
tions and two divisions per byte.

“So how can we improve on this?
The first answer we can give, it
seems, is not a lot. The algorithm is
pretty clear about what goes on. As
in the code I’ve just given, we need
the checksum of a block of bytes,
or we can arrange things so that we
calculate an incremental check-
sum based on blocks of bytes,
rather than a single byte at a time.
So our second answer is to analyse
the algorithm based on several
bytes at once.

“Suppose we have a stream of
bytes: b1, b2, b3, etc. Call the two
halves of the checksum S1 and S2.
After the first byte is processed we
have:

S1=(1+b1) mod p
S2=(1+b1) mod p

Where p is 65,521 and we remem-
ber that we start the whole thing
off with an initial checksum value
of 1. With the next byte it all seems
to get hairy, really quickly. For
instance, S1 is now:

S1=(((1+b1) mod p)+b2) mod p

It looks pretty bad until we remem-
ber some equalities that exist with
modulus arithmetic. Namely,
adding two values and then calcu-
lating their modulus is the same as
adding the two values after taking
their modulus, and then taking the
modulus of the result. In other
words:

S1=(1+b1+b2) mod p

And similarly:

S2=(2+2*b1+b2) mod p

Writing out the next few values, we
see that after n bytes we have:

S1=(1+b1+b2+..+bn) mod p
S2=(n+n*b1+(n-1)*b2+..+bn)
mod p

So now the problem boils down to
something different: how many
bytes can we process before one of
the calculations overflows a
longword (we’ll assume that we
hold S1 and S2 in longwords). When
that point is reached we’ll need to
take the modulus of both values
(producing a value between 0 and
65,520, a 16-bit value) and then
continue. The answer for S1 is
fairly easy to calculate: assuming
we start at 1, we can add a little less
than 224 bytes of value 255 (the
maximum) before we overflow.
(This is the minimum of course, we
may be lucky and add more, but at
least this gives us a flavor of the
value). Once we’ve gone through
the cycle once, our starting point
will be a number of maximum
value 65,521, but this isn’t going to
affect things too much.

“The answer for S2 is going to be
smaller, way smaller. We’re essen-
tially calculating a triangular
number. Make all the bs equal to
255 and S2 then evaluates to

S2=(n+255*tri(n)) mod p

Where tri(n) is the nth triangular
number. A triangular number is
like a factorial, except you add the
terms instead of multiplying them:

tri(1)=1
tri(2)=2+1=2
tri(3)=3+2+1=6

and so on. The formula for Tri(n) is
thus n(n+1)/2 (the proof is by
induction for all you math whizzes
out there). This amounts to solv-
ing a good old quadratic equation,
and if you do so you get n=5,552.
Hence we can add 5,552 bytes into
our partial sums S1 and S2 before
we need to calculate their modulus
with respect to 65,521. We have

function UpdateAdlerSimple(aAdler : longword;
var aBuffer; aCount : integer) : longword;

var
S1 : longword;
S2 : longword;
i : integer;
Buffer : PChar;

begin
S1 := aAdler and $FFFF;
S2 := aAdler shr 16;
Buffer := @aBuffer;
for i := 0 to pred(aCount) do begin
S1 := (S1 + ord(Buffer^)) mod 65521;
S2 := (S2 + S1) mod 65521;
inc(Buffer);

end;
Result := (S2 shl 16) or S1;

end;

function UpdateAdler(aAdler : longword;
var aBuffer; aCount : integer) : longword;

var
S1 : longword;
S2 : longword;
i : integer;
Buffer : PChar;

begin
Assert(aCount <= 4096,
'the UpdateAdler routine has been optimized for buffers up to 4KB');

S1 := aAdler and $FFFF;
S2 := aAdler shr 16;
Buffer := @aBuffer;
for i := 0 to pred(aCount) do begin
inc(S1, ord(Buffer^));
inc(S2, S1);
inc(Buffer);

end;
S1 := S1 mod 65521;
S2 := S2 mod 65521;
Result := (S2 shl 16) or S1;

end;

➤ Listing 6: Simple implementation of the Adler checksum algorithm.

➤ Listing 7: Optimized Adler checksum.

December 2000 The Delphi Magazine 27

two additions per byte, with two divisions per 5,552
bytes. Much easier, and more efficient to boot.”

Father Christmas nodded, and typed Listing 7. He
assumed we were calculating the Adler checksum for a
stream which we were reading in blocks of 4,096 bytes,
a favourite stream buffer size of mine. We tested both
routines: the simple one took 4,982 milliseconds for a
multi-megabyte file, the optimized one 206 millisec-
onds. Not bad for a simple application of elementary
mathematics.

Suddenly, up ahead on the trail, I saw the figure of my
wife, running towards us. I jumped up and waved at
her. She soon arrived. I looked around to introduce her,
but we were alone. The deer looked at us, startled, as if
they’d never noticed us before, and bounded away. My
wife wanted to know what was I doing just sitting
around on the grass instead of biking and getting some
healthy exercise, and took off down the trail toward the
car. I sighed, picked up my bike and followed, carrying
the two empty bottles of Evian.

Julian Bucknall wishes all his readers a Merry
Christmas and a Happy New Year (or whatever they
may celebrate). He’ll be back in 2001, after enjoying
the real start of the Millennium. He can be reached at
julianb@turbopower.com. The code that accompa-
nies this article is freeware and can be used as-is in
your own applications.
© Julian M Bucknall, 2000

